Topic 8 -
Eigenvalues and Eigenvecture

Tupic 8 - Eigenvalues and Eigenvectors) Def: Let ^A be an nxn matrix . \vec{x} in \vec{R}^n and $\begin{array}{c}\n\text{matrix} \\
\rightarrow \\
\times\n\end{array}$ Suppose and $(A\vec{x} = \lambda \vec{x})$ for some λ . $n \times n$ matrix.
and $\overrightarrow{x} \neq 0$
 $\overrightarrow{sm} \in \overbrace{\lambda}$ is lambdag Scalar/number Then λ is called an eigenvalue of A and \vec{x} is called an eigenvector of ^A corresponding $Suppose \times$
and $A \times I$
scalar/nume
hen λ is
of A and
eigenvecture
 A $\begin{matrix} \uparrow & \downarrow \end{matrix}$. -
Given an eigenvalve λ of A , the eigenspace of A corresponding to ^X is $E_{\lambda}(A) = \sum_{x} \overrightarrow{X} |A\overrightarrow{x} = \lambda \overrightarrow{X}$ sponding $[Ex(11)$ consists of all eigenvectors corresponding
 $[Ex(A)$ consists of all eigenvectors corresponding

$$
E \times L_{et} \quad \text{Let} \quad A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}
$$
\n
$$
Let \quad \lambda = \begin{pmatrix} 3 \\ 4 & -2 \end{pmatrix}
$$
\n
$$
\Rightarrow \quad \lambda = \begin{pmatrix} 3 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} (10)(3) + (-9)(2) \\ (-1)(3) + (-2)(2) \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 12 \\ 8 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}
$$
\n
$$
= 4 \cdot \begin{pmatrix} 3 \\ 2 \end{pm
$$

How do we find the eigenvalues
\nof an nxn matrix A B
\nSuppose
$$
\lambda
$$
 is an eigenvalue of A
\nand $\vec{x} \neq \vec{0}$ is an eigenvector
\nassociated with λ .
\nThen, $A\vec{x} = \lambda \vec{x}$.
\nSo, $A\vec{x} - \lambda \vec{x} = 0$.
\nSo, $A\vec{x} - \lambda \vec{x} = 0$.
\nThen, $(A - \lambda I_n) \vec{x} = 0$ where
\n I_n is the nxo identity matrix.

 $So, (A-\lambda I_n) \times = 0$ where $\overrightarrow{x} \neq 0.$ The only way this can happen is if $A-\lambda\ I_n$ has no $(1 - \lambda T_n) \vec{x} = 0$ where \vec{x}
y way this can happen
if $A - \lambda T_n$ has no inve
J Let $B = A - \lambda T_n$.
I Let $B = A - \lambda T_n$.
I existed then since
 $\vec{B}B\vec{x} = \vec{B}$ pen
inverse. $\left| \begin{matrix} 1 \\ -1 \\ 1 \end{matrix} \right|$ The only way this can b
is if $A-\lambda T_n$ has v
Why? Let $B=A-\lambda T_n$.
 $\overline{Y} + B^{-1}e\times i$ sted then sin Why? Let $B = A - \lambda I$.
 $Tf B^{-1} e \times is4d$ then since
 $B \times = 0$ you would get $B B \times = B$
 $B \times = 0$ you would get $B B \times = B$
 $B \times = 0$.

Which would give $X = 0$. —
|
|existed then since $B\stackrel{\rightarrow}{\times} = 0$ you $\begin{array}{ccc} \text{vol}_d & \text{vol}_d & \text{det} & \text{B}^1B^1 \times = & \text{B}^1B^1 \times & \text{E}^1 & \text{E}^$ which would give X = 0. So, $(A - \lambda I_n) \times = 0$ where $\vec{x} \neq 0$.

The only way this can happen

is if $A - \lambda I_n$ has no inverse.

Why? Let $B = A - \lambda I_n$.
 $\exists f B^{-1} e \times i$ sted then since
 $B \vec{x} = 0$ you would give $\vec{x} = 0$.

But $\vec{x} \neq 0$. So, B^{-1} do $But \nvert x \neq 0$. So, B^{1} does not

Thus, $def(A-\lambda I_n)=0$ Since $(A-\lambda\pm n)^{-1}$ dues not
exist.

Summary: The eigenvalues of A sutisfy the equation $\text{det}(A-\lambda\text{I}_n)=0.$ Called the characteristic
polynomial of A

$$
Exi \cdot \frac{1}{2} (HW \cdot 8 \pm I(b))
$$
\n
$$
Let A = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}
$$
\n
$$
Let's find the eigenvalues of A
$$

$$
= det \begin{pmatrix} 10-\lambda & -9 \\ 4 & -2-\lambda \end{pmatrix}
$$

= $(10-\lambda)(-2-\lambda) - (-9)(4)$
= $-20-10\lambda+2\lambda+\lambda^2+36$
= $\lambda^2-8\lambda+16$
= $(\lambda-4)(\lambda-4)$
= $(\lambda-4)^2$
The eigenvalues of A are when $(\lambda-9)^2=0$.
Thus, the only eigenvalue of A is $\lambda=9$.

Facts/Defs Let ^A be an nxn matrix . -acts/Defs
Let A be an nxn matrix
Let λ be eigenvalue of A. Let λ be eigenvalue of A.
(1) The eigenspace $E_{\lambda}(A)$ is a subspace of \mathbb{R}^n . ② The dimension of Ex(A) is The dimension of Lacrin
called the geometric multiplicity $radled$ $\frac{0 f \lambda}{\sqrt{3}}$
(3) The algebraic multiplicity of λ $\frac{1}{15}$ the multiplicity of λ as a root of the characteristic s the multiplicity
a root of the char
polynomial of A. $\bigoplus_{0\leq t} \left(\begin{array}{cc} \text{geometric} & \text{multiplyibility} \\ \text{invariant} \end{array} \right) \leq \left(\begin{array}{cc} \text{augening} \\ \text{multiplied} \end{array} \right)$

Ex: Let $A =$ $\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$ be as in the previous example. We had that the characteristic poly of ^A was det (A- $\lambda(t) = (\lambda - 4)^2$ thus, $\lambda = 4$ is an eigenvalue with det (π \sim)
Thus, $\lambda = 4$ is an eigenvalue
algebraic multiplictity of 2. L et's now find the eigenvectors corresponding to $\lambda = 4$.

Let's get ^a basis for Ey(A) ⁼ ^E * /A* ⁼ ⁴ *] Need to solve A⁼ ⁴ * Let's solve ! (i = 2)(i) ⁼ 4(5) (1) ⁼ (ii) (i) ⁼ (i) This gives : Ga - 9b [= 0 ya - 6b = ⁰

Solving:
\n
$$
\begin{pmatrix} 6 & -9 \\ 4 & -6 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{\frac{1}{6}R_1 \rightarrow R_1} \begin{pmatrix} 1 & -3/2 & 0 \\ 4 & -6 & 0 \end{pmatrix}
$$
\n
$$
\xrightarrow{-4R_1 + R_2 \rightarrow R_1} \begin{pmatrix} 1 & -3/2 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

$$
\frac{30 \text{WC } 9e^{+}}{0 - \frac{3}{2}b} = 0 \int leading: \alpha
$$

$$
0 = 0 \int freq: b
$$

$$
S_{0}luthions!
$$

$$
b = t
$$

$$
a = \frac{3}{2}b = \frac{3}{2}t
$$

Thus if \vec{x} solves $A\vec{x} = 4\vec{x}$ then $\vec{x} = \begin{pmatrix} 0 \\ b \end{pmatrix} = \begin{pmatrix} 3/2 & t \\ t & \end{pmatrix} = t \begin{pmatrix} 3/2 \\ 1 & \end{pmatrix}$

Thus, a basis for Ey(A) is $\binom{3/2}{1}$. Thus, $\lambda=4$ has geometrie multiplicity $dim(E_{4}(A))=1.$ Summary table for \overline{A} Geometric basis for a 1 g. eigenvalue mult. $E_{\lambda}(A)$ $mult.$ $0f \lambda$ of λ λ $\begin{pmatrix} 3/2 \\ 1 \end{pmatrix}$ $\lambda = 4$

What does it mean that
$$
\binom{3/2}{1}
$$
 is a
\nbaris for the eigenspace for $\lambda=4$?
\nIf means you can get all the eigenvector
\n $f_{DC} \lambda = 4$ by scaling $\binom{3/2}{1}$ by a
\n $10n - 200$ number.
\n $\frac{1}{1000} = \frac{1}{200}$
\n \frac

 $Ex: Le+ A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$

Find the eigenvalues, bases for the eiyenspaces , and algebraic/geometric multiplicities of the eigenvalves sme
S
S

Ex: Let $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$
Find the eigenvalues, bases for
the eigenspaces, and algebraic/ger
multiplicities of the eigenvalue
 $\frac{1}{\sqrt{2\pi}}$
Eigenvalue time!
 $\frac{1}{\sqrt{2\pi}}$
 $\frac{1}{\sqrt{2\pi}}$ and $\frac{1}{\sqrt{2\pi}}$ Eigenvalue time! $det(A-\lambda I_2) = det\left(\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$ $= det (8 - 1) +$ $($ - λ 0
(- λ 0
(σ - λ $\left(\frac{1}{\lambda}\right)$ $= det \begin{pmatrix} 3-\lambda & -1 \\ 8 & -1 \end{pmatrix}$ $\begin{pmatrix} 0 & \ & \ & \ & \ & \ & \ & \end{pmatrix}$

 $=\left(3-\lambda\right)\left(-1-\lambda\right)-\left(0\right)\left(\begin{array}{c}8\end{array}\right)$ $= (3 - \lambda) (-1 - \lambda)$ $= 2 - (\lambda - 3)$] $- (\lambda + 1)$ 1 $= [-(\lambda^{-3})](-(\lambda^{+1}))$
= $(\lambda^{-3})^{0}(\lambda+1)^{0}$ $And (\lambda-3)(\lambda+1)=0$ When $\lambda = 3$, -1. So the eigenvalues are $\lambda = 3$ $3, -1.$ \vert . The algebraic multiplicity of both eigenvalves is So the eigenvalues are λ^{23}
The algebraic multiplicity
of both eigenvalues is 1.
Let's find a basis for the Let's find a basis for the

eigenspace E₃(A) for
$$
\lambda = 3
$$
.
\nNeed to solve $A \times 3 \times 3$.
\nNeed **h** solve
\n
$$
\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 3 \begin{pmatrix} a \\ b \end{pmatrix} 4 \begin{pmatrix} 4 \lambda - 3 \lambda \\ 1 \lambda - 3 \lambda \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 3\alpha & 0 \\ 8\alpha - b \end{pmatrix} = \begin{pmatrix} 3a \\ 3b \end{pmatrix}
$$
\nNeed **h** solve
\n
$$
\begin{pmatrix} 0 \\ 8\alpha - 4b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$
\nNeed **h** solve
\n
$$
\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0
$$
\n
$$
\begin{pmatrix} \frac{1}{2}k_1 \lambda R_1 & 0 - \frac{1}{2}b \ge 0 \\ 0 \ge 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0
$$
\n
$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0
$$
\n
$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0
$$

Solution:
\n
$$
b = t
$$

\n $a = \frac{1}{2}b = \frac{1}{2}t$
\nSo, if \vec{x} solves $A\vec{x} = 3\vec{x}$ then
\n $\vec{x} = (\begin{array}{c} a \\ b \end{array}) = (\begin{array}{c} y_2 \pm \\ t \end{array}) = \pm (\begin{array}{c} y_2 \\ t \end{array})$
\nThus a basis for $E_3(A)$ is
\ngeometric multiplicity
\ndim(E₃(A)) = $\frac{1}{\pm \sqrt{ecbscs}}$
\in a basis

Let's now find a basis Let's now find a be
for the eigenspace E -, (A) f_{01} λ = -1. $\pi r \lambda = -1.$
We need to solve $AX = -x$. Need to solve $\begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} 9 \\ 6 \end{pmatrix} =$ $-\begin{pmatrix} 0 \\ b \end{pmatrix}$ $\left(\begin{matrix} 1 \\ A \end{matrix}\right)$ $\begin{pmatrix} 3a \\ 8a \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $(3a - b) =$
 $(4a - b) =$ $\left(\begin{array}{cc}4a\\8a\end{array}\right)=\left(\begin{array}{c}0\\0\end{array}\right)$

This becomes

$$
\frac{\begin{pmatrix} 4a & = D \\ 8a & = O \end{pmatrix}}{\begin{pmatrix} 4000 & \frac{1}{4}R_1 \frac{3}{4}R_1 \\ 8000 & \frac{-8R_1 + R_2 \frac{3}{4}R_2}{6000} \\ 0 & \frac{-8R_1 + R_2 \frac{3}{4}R_2}{60000} \\ 0 & \frac{-8R_1 + R_2 \frac{3}{4}R_2}{600000} \\ 0 & \frac{-8R_1 + R_2 \frac{3}{4}R_2}{600000} \\ 0 & \frac{-8R_1 + R_2 \frac{3}{4}R_2}{60000} \\ 0 & \frac{-8R_1 + R_2 \frac{3}{4}R_2
$$

$$
\begin{array}{c}\n\int u \text{ we get} \\
\boxed{a} = D \\
0 = 0\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{leading: } a \\
\boxed{a} = 0 \\
\end{array}
$$

$$
S_{0}|\bigcup_{a=0}^{i=1}\frac{1}{b}=\frac{1}{b}
$$

So, if
$$
\overrightarrow{x}
$$
 solves $A\overrightarrow{x} = -\overrightarrow{x}$ then
\n $\overrightarrow{x} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ t \end{pmatrix} = \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
\nSo a basis for E₋₁ (A)
\nis (0) and so $\lambda = -1$
\nhas geometric mult. dim(E₋₁(A)) = 1
\n
\nSummary for $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$ $\begin{matrix} 1 & \frac{1}{10} \\ \frac{10}{10} & \frac{1}{10} \\ \frac{10}{10} & \frac{1}{10} \end{matrix}$
\neigenvalue λ aligned $\overrightarrow{m_111}$ Ex. (A)
\n $\lambda = 3$ 1 1
\n $\lambda = -1$ 1 1 1

 $Ex: Le+A=\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$ Let's find the eigenvalues of A. We need to solve $det(A-\lambda I_3) = 0$
is 3x3

We have $def(A-\lambda I_{3})$ = det $((\begin{array}{cc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 0 & 3 \end{array}) - \lambda (\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}))$ \forall $\frac{1}{3}$ $= det \left(\left(\begin{array}{cc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array} \right) - \left(\begin{array}{cc} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{array} \right) \right)$ $= det \begin{pmatrix} -\lambda & 0 \\ 1 & 2-\lambda & 1 \\ 0 & 3-\lambda & 1 \end{pmatrix}$ $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

 $= -0 + (2-\lambda)\begin{vmatrix} -\lambda & -2 \\ 1 & 3-\lambda \end{vmatrix} - 0$ $\begin{pmatrix} -\lambda & 0 & -2 \\ + & 2\lambda & + \\ 1 & 0 & 3-\lambda \end{pmatrix}$ $= (2-\lambda)\begin{vmatrix} -\lambda & -2 \\ 3-\lambda & -2 \end{vmatrix}$ $=(2-\lambda)\left[(-\lambda)(3-\lambda)-((1)(-2)\right]$ $=(2-\lambda)(\lambda^2-3\lambda+2)$ $=(2-\lambda)(\lambda-1)(\lambda-2)$ $= -(\lambda - 2)(\lambda - 1)(\lambda - 2)$ $= -(\lambda^{-2})^{z}(\lambda^{-1})$ $\lambda = 2$ has alg. $m^{u}l^{2}$. 2
 $\lambda=1$ has alg. The eigenvalues are $\lambda = 2, 1$. mult. 1.

Let's find the eigenvectors of A. Let's start with $\lambda=1$. Let's find a basis for $E_{1}(A) = \left\{ \begin{array}{c} \rightarrow \\ \times \end{array} \right| A \times \left\{ \begin{array}{c} \rightarrow \\ \times \end{array} \right\}$ The equation $A \times I \times I$ becomes $\left(\begin{array}{rrr}0&0&-2\\1&2&1\\1&0&3\end{array}\right)\left(\begin{array}{c}a\\b\\c\end{array}\right)=1,\left(\begin{array}{c}a\\b\\c\end{array}\right)$ $\frac{1}{\sqrt{2\pi}}$
 $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$ This become's $\begin{pmatrix} 0a + 0b - 2c \\ a + 2b + c \\ a + 0b + 3c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

This gives
$$
\begin{pmatrix} -2c \\ a+2bt & c \\ 0 & +3c \end{pmatrix} = \begin{pmatrix} 0 \\ b \\ c \end{pmatrix}
$$

\nThis gives $\begin{pmatrix} -a & -2c \\ a+bt & c \\ 0 & +2c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
\nSo, $\begin{pmatrix} -a & -2c & =0 \\ 0 & +2c & =0 \\ 0 & +2c & =0 \end{pmatrix}$
\nSolving we get
\n $\begin{pmatrix} -1 & 0 & -2 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} -R_1 \rightarrow R_1 & 0 & 2 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \end{pmatrix}$
\n $\begin{pmatrix} -1 & 0 & -2 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} -R_1 \rightarrow R_1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 \end{pmatrix}$

$$
SO_{1}\left\{\begin{array}{c}-a & -2c=0\\a+b+c=0\\a+2c=0\end{array}\right\}
$$

Solving we get & -^R ⁺ R⁺ Ry)bY ⁼ - " 1 %) - ^R , ⁺ Rz - R3 ^O ^O ^O

We get
\n
$$
\begin{array}{r} \n\begin{array}{r}\n0 \\
0 \\
0\n\end{array} + 2c = 0 \\
0 = 0\n\end{array}\n\begin{array}{r}\n0 \\
\text{(leading: } a, b) \\
\text{free: } c\n\end{array}
$$

 $S_0\vee\vee\wedge\vee\wedge\wedge$ $Solving in the image. The image is shown in the$ $c = t$ $a = c = t$ $0a = -2c = -2t$ $\frac{1000-20}{\pi}$
Thus, if $\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix}$ is in $E_1(A)$ $fhen \Rightarrow f = \begin{pmatrix} a \\ b \\ c \end{pmatrix} =$ $\begin{pmatrix} \dot{\zeta} & \dot{\zeta} \\ -2\dot{\zeta} \\ \dot{\zeta} & \dot{\zeta} \end{pmatrix}$ = $t\begin{pmatrix} -c \\ 1 \end{pmatrix}$ S_{0} , $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ is a basis for $E_{1}(A)$ $Thus,$ $dim (E,(A)) = 1$

Let's now find ^a basis for $E_2(A) = \frac{1}{2} \times 1 \text{ A} =$ $2\overrightarrow{x}$ Want to solve $A x = 2x$. So need to solve

↓

$$
\begin{pmatrix}\n0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3\n\end{pmatrix}\n\begin{pmatrix}\n\alpha \\
b \\
c\n\end{pmatrix} = 2 \begin{pmatrix}\n\alpha \\
b \\
c\n\end{pmatrix} + (\overline{A}\overline{X} = 2\overline{X})
$$
\n
$$
\begin{pmatrix}\n-\frac{2}{2} & -2\\ \alpha + 2b + c \\
0 & 13\end{pmatrix} = \begin{pmatrix}\n2 & 0\\ 2 & 1\\ 2 & c\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n-2 & \alpha & -2 & 2\\ \alpha & +c & c\\ \alpha & +c & c\n\end{pmatrix} = \begin{pmatrix}\n0\\ 0\\ 0\\ 0\n\end{pmatrix}
$$

This gives

$$
7a - 2c = 0
$$

\n
$$
0 + c = 0
$$

\n
$$
0 + c = 0
$$

$$
\lfloor e^{1/5} \cdot s_{0} \cdot \sqrt{e^{2}}
$$

$$
\begin{pmatrix}\n-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0\n\end{pmatrix}\n\xrightarrow{R, \theta R_{2}}\n\begin{pmatrix}\n1 & 0 & 1 & 0 \\
-2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n2R_{1} + R_{2} \rightarrow R_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-R_{1} + R_{3} \rightarrow R_{3} & 0 & 0 & 0\n\end{pmatrix}
$$

$$
This gives:\n
$$
0 + C = 0
$$
\n
$$
0 = 0
$$
\n
$$
0 = 0
$$
$$

leading" a
free: c, b

 S_{0} | u tion: $\begin{cases} b = t \\ c = u \\ a = -u \end{cases}$

Thus, if \vec{x} solves $A \vec{x} = 2 \vec{x}$ then

$$
\vec{x} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -u \\ t \\ u \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} -u \\ 0 \\ u \end{pmatrix} + \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix}
$$
\n
$$
= u \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\nSo all solutions of $A\vec{x} = 2\vec{x}$ are
\nlinear combinations of $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
\nThus, $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ span the
\neigenvalue $\begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
\nUse linearly independent.

Thus,
$$
\begin{pmatrix} -i \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
$$
 is a basic for
\n $E_2(A)$, S_0 , $\lambda = 2$ has
\n*qometric* multiplying
\n $dim(E_2(A)) = 2$.
\n $Summay table for A:$

